阿里达摩院发布业内首个遥感AI大模型,一个模型即可识别农田、农作物、建筑等地表万物,让AI进一步下沉到田间地头,大幅提升灾害防治、自然资源管理、农业估产等遥感应用的分析效率,该模型已在AI Earth地球科学云平台开放使用。 遥感技术在城市运营、耕地保护、应急救灾等国计民生中的应用甚广,遥感AI则可以大幅提升既有数据的利用深度,输出更精细化、更准确的分析结果,如结合卫星照片与历史气象情况,“算”出某一块农田里作物的长势状况,让种地不再被动,而是更主动地“看天吃饭”。 以往,由于遥感卫星的影像数据规模巨大、地物分类复杂,要识别不同的地表物体,需要分别训练多个专用的遥感模型,且单个模型存在识别准确率低、泛化性差等问题。2023年4月,Meta发布的论文《Segment Anything》让计算机视觉进入快速迭代的大模型时刻,也推动遥感AI朝着“一个模型解决多个任务”的方向发展。 达摩院此次提出的遥感AI解译通用分割模型(AIE-SEG),率先在遥感领域实现了图像分割的任务统一,一个模型即可实现“万物零样本”的快速提取,可识别农田、水域、建筑物等近百种遥感地物分类,且多项任务处理下依旧保持高精度的识别,还能根据用户的交互式反馈自动调优识别结果。在一些特定场景下,对比传统的遥感模型,实例提取的准确率可提升25%,变化检测的准确率可提升30%。 责编:聚观365 此内容归聚观365整编发布,未经聚观365书面授权,不得以任何方式加以使用,包括转载、摘编、复制或建立镜像。
发表评论 取消回复